Skip to content
Go back

Legendre Polinomlarının Negatif Mertebe İlişkisi

Negatif mertebeli Legendre polinomunu açıkça yazalım:

PLm(x)=12LL!(1x2)m/2dLmdxLm(x21)LP_L^{-m}(x) = \frac{1}{2^L L!} (1 - x^2)^{-m/2} \frac{d^{L-m}}{dx^{L-m}} (x^2 - 1)^L

Ayrıca biliyoruz ki:

dLmdxLm(x21)L=(Lm)!(L+m)!(x21)mdL+mdxL+m(x21)L\frac{d^{L-m}}{dx^{L-m}} (x^2 - 1)^L = \frac{(L - m)!}{(L + m)!} (x^2 - 1)^m \frac{d^{L + m}}{dx^{L + m}} (x^2 - 1)^L

Bu ifadeyi yerine koyarsak:

PLm(x)=12LL!(1x2)m/2(Lm)!(L+m)!(x21)mdL+mdxL+m(x21)LP_L^{-m}(x) = \frac{1}{2^L L!} (1 - x^2)^{-m/2} \frac{(L - m)!}{(L + m)!} (x^2 - 1)^m \frac{d^{L + m}}{dx^{L + m}} (x^2 - 1)^L

(x21)m=(1)m(1x2)m(x^2 - 1)^m = (-1)^m (1 - x^2)^m olduğundan:

PLm(x)=(1)m(Lm)!(L+m)!12LL!(1x2)mm/2dL+mdxL+m(x21)LP_L^{-m}(x) = (-1)^m \frac{(L - m)!}{(L + m)!} \frac{1}{2^L L!} (1 - x^2)^{m - m/2} \frac{d^{L + m}}{dx^{L + m}} (x^2 - 1)^L

Parantez içindeki ifade (P_L^m(x)) olduğundan:

PLm(x)=(1)m(Lm)!(L+m)!PLm(x)\boxed{P_L^{-m}(x) = (-1)^m \frac{(L - m)!}{(L + m)!} P_L^m(x)}

Share this post on:

Previous Post
Legendre Polinomları Türev İlişkisi